Quantum Theory and the Electronic Structure of Atoms

Chapter 7

A photon has a frequency of 6.0×10^4 Hz. What is the Wavelength of this photon in nm? Does this frequency fall in the visible region (400 – 600 nm)?

A photon has a frequency of 6.0×10^4 Hz. What is the Wavelength of this photon in nm? Does this frequency fall in the visible region (400 – 600 nm)?

When copper is bombarded with high-energy electrons, X rays are emitted. Calculate the energy (in joules) associated with each photon if the wavelength of the X rays is 0.154 nm.

When copper is bombarded with high-energy electrons, X rays are emitted. Calculate the energy (in joules) associated with each photon if the wavelength of the X rays is 0.154 nm.

How many 2p orbitals are there in an atom?

How many 2p orbitals are there in an atom?

How many electrons can be placed in the 3d subshell?

How many electrons can be placed in the 3d subshell?

Give the values of the quantum numbers associated with the orbitals in the 3p subshell.

Give the values of the quantum numbers associated with the orbitals in the 3p subshell.

What is the total number of orbitals associated with the principle quantum number $n=4$?

What is the total number of orbitals associated with the principle quantum number $n=4$?

Using the periodic table to determine electron configuration

Using the periodic table to determine electron configuration

1s
2s
2p
3s
3p
4s
3d
4p
4s
4d
5p
5s
5d
6p
6s
6d
7p
7s
8s
4f
5f

Using the periodic table to determine electron configuration

Using the periodic table to determine electron configuration

1s
2s
2p
3s
3p
4s
3d
4p
4s
4d
5p
5s
5d
6p
6s
6d
7p
7s
8s
4f
5f

Using the periodic table to determine electron configuration

Using the periodic table to determine electron configuration

1s
2s
2p
3s
3p
4s
3d
4p
4s
4d
5p
5s
5d
6p
6s
6d
7p
7s
8s
4f
5f

Using the periodic table to determine electron configuration
Writing Electron Configurations with the Periodic Table

- Silicon
- Tellurium (Te)
- Lead (Pb)
- O^2-

What are the possible quantum numbers for the last (outermost) electron in Cl?